
            International Journal of Advanced Research in ISSN: 2349-2819  

            Engineering Technology & Science                 Impact Factor: 7.10 
                             ( Peer-Reviewed, Open Access, Fully Refereed International Journal) 
                  Email: editor@ijarets.org            Volume-11, Issue-8 August – 2024                www.ijarets.org 

Copyright@ijarets.org                                                                                                                      Page  97 

EVALUATING STRATEGIES AND TRIALS FOR 

ENHANCING SOFTWARE COMPONENT REUSE 

Batrel Satish Rajkumar 

Research Scholar, Glocal School of Technology and Computer Science, The Glocal University 

Mirzapur Pole Saharanpur (U. P.) India. 

 

Dr. Jugnesh Kumar 

Research Supervisor, Glocal School of Technology and Computer Science, The Glocal University 

Mirzapur Pole Saharanpur (U.P) India. 

ABSTRACT: 

The article explores the concept of software reuse, which involves building new software systems and 

applications by leveraging existing software components. This approach has gained significant traction in 

recent years due to its potential to enhance both productivity and quality throughout the software 

development lifecycle. Three main approaches to software reuse are highlighted: component-based reuse, 

domain engineering and software product lines, and architecture-based reuse.Component-based reuse 

focuses on creating modular software components that can be integrated into multiple applications. Domain 

engineering and software product lines emphasize analyzing and documenting the shared features and 

differences among a family of related systems to facilitate the creation of reusable assets. Architecture-

based reuse, on the other hand, involves designing a flexible software architecture that can be adapted to 

various systems.While software reuse offers clear benefits, such as efficiency gains and improved 

consistency, it also presents several challenges. These include difficulties in locating, selecting, and 

customizing existing components, as well as organizational and cultural resistance that can hinder the 

effective implementation of reuse strategies. 

Key words -: Software Reuse, Component-Based Reuse,  Architecture-Based Reuse, Domain Engineering, 

Software Product Lines, Reusable Components, Software Architecture, Software Development 

Productivity 

INTRODUCTION 

 

Software reuse is the practice of creating new software systems utilising older software artefacts. 

Reusing software helps to cut down on the expense, effort, and time needed to construct software 

systems. Due to the components prior testing, validation, and performance optimization, reuse of 

software components can result in increased productivity, improved quality, and lower development 

costs. The concept of software reuse has been around since the late 1960s, but it took several decades 

for the practice to become widely adopted. One of the early efforts to promote software reuse was the 

Ada programming language, which was designed to facilitate the development of reusable software 

components. However, the adoption of Ada and other early approaches to software reuse was limited by 

http://www.ijarets.org/


International Journal of Advanced Research in Engineering Technology and Science    ISSN 2349-2819 

www.ijarets.org                                   Volume-11, Issue-8 August – 2024                 Email- editor@ijarets.org 

 

Copyright@ijarets.org                                                                                                                      Page  98 

the lack of standardization and the complexity of developing and managing reusable components. Today, 

there are many software reuse techniques and practices that have been developed and refined over the 

years. Some of these include domain analysis, software product lines, component-basedsoftware 

engineering, service-oriented architecture, and open-source software. Each of these approaches has its 

own strengths and weaknesses, and choosing the right approach depends on the specific needs and 

requirements of the software development project. Despite the potential benefits of software reuse, there 

are still obstacles and restrictions that preventit from being widely used. One of the most difficult issues 

is finding and selecting relevant reusable artefacts, which necessitates a thorough grasp of the system 

requirements, available components, and project applicability. Another problem is managing the 

complexity of reusable software systems, which can be difficult to understand and troubleshoot due to 

the interplay of numerous components. Furthermore, establishing compatibility between distinct 

software components can be difficult since they may have different interfaces, data formats, or 

implementation details. In assumption, software reuse is asignificant study and development subject in 

software engineering. While the concept of software reuse has been around for decades, much work 

remains to be done in order to fully realise its potential. With the development of new approaches and 

methods, as well as the rising availability of reusable software components, software reuse is anticipated 

to continue to play a major role in software development in the coming years. 

REVIEW OF RELATED WORKS: 

 

Kaur and Sohal (2023) investigated how to construct a QR code library using software reuse 

approaches. They created the library utilising Android and other modern technologies, and their 

approach included applying design patterns, aspect- oriented integration, and other object-oriented 

programming structures to boost productivity, save time, and save development costs. They were able 

to accomplish these benefits by reusing code rather than beginning from scratch.  

Thapar et al (2022) proposed a quality model for assessing software components based on reusability. 

They identified three essential factors that are relevant in software selection and development: the 

quality properties preferred by stakeholders, the necessary improvements to software component reuse, 

and the integration of these properties into a proposed model. Their model helps to ensure that only 

quality properties that are necessary for improving software reuse are integrated into the development 

process. Ahmer et al (2019) conducted a literature review to gain a better understanding of the concept, 

benefits, and factors of software reusability. They identified 11 methods for software reuse, including 

design patterns, component-based design, application frameworks, legacy systems wrapping, service-

driven systems, application product lines, COTS integration, and program libraries. Their review helped 

to consolidate existing knowledge on software reuse and provided a framework for future research.  

Varnell-Sarjeant and Amschler Andrews (2019) analyzed empirical studies to compare reuse results in 

embedded and non-embedded systems. They compared the success and failure of software reuse in these 

two types of systems and looked at factors such as reuse amount, effort, quality, performance, and 

overall achievement. Their findings help to identify the factors that contribute to successful software 

reuse and to understand the impact of the development approach on reuse success or failure. 

Xin and Yang (2017) discussed an engineering management software reuse framework that provides 

guidance on how to select types of reuses and how to manage the reuse process. They identified four 

types of software reuse and explained how reuse feasibility should be analysed. Their study highlighted 

the importance of key point management in the reuse of software and demonstrated how a careful 

http://www.ijarets.org/
mailto:editor@ijarets.org


International Journal of Advanced Research in Engineering Technology and Science    ISSN 2349-2819 

www.ijarets.org                                   Volume-11, Issue-8 August – 2024                 Email- editor@ijarets.org 

 

Copyright@ijarets.org                                                                                                                      Page  99 

approach to software reuse can provide significant benefits.  

Mateen et al. (2021) developed a reuse strategy for increasingsoftware quality. They employed a 

verification and validation (V&V) method to control quality and accuracy throughout the software life 

cycle, followed by a questionnaire survey to determine the influence of their methodology on quality 

attributes, specifications, and design specifications. They discovered that using ad hoc, CBSE, MBSE, 

product line, and COTS reuse strategies resulted in considerable increases in software quality. Finally, 

these studies highlight the potential benefits of software reuse and provide guidance on how to achieve 

these benefits through careful planning, management, and selection of reuse techniques. While software 

reuse has been around for decades, there is still much to learn about how to make the most of this 

powerful tool for software development. 

EXISTING SYSTEM: 

Component-based development (CBD) is an existing system of software reuse. It is a software 

engineering approach that emphasizes the use of reusable software components. In CBD, software is 

built by assembling pre-existing software components, rather than writing code from scratch. CBD 

promotes the development of modular, reusable, and maintainable software systems. 

CBD involves creating software components that can be reused in different applications. These 

components are designedto be self-contained and can be easily integrated with other components. CBD 

promotes software reuse by allowing developers to create software systems by assembling pre-existing 

components, rather than writing code from scratch. Thisreduces development time and cost while 

improving software quality. 

CBD components can be developed in any programming language and can be implemented as 

standalone executables, dynamic link libraries, or web services. Examples of CBD frameworks include 

Microsoft's .NET Framework and Java Enterprise Edition. 

CBD has several advantages, including: 

 Reduced development time and cost 

 Improved software quality 

 Increased productivity 

 Improved maintainability and scalability 

 Improved interoperability 

 Enhanced reuse of existing software components However, CBD also has some 

disadvantages, including: 

 Increased complexity due to the need for component integration 

 Limited availability of reusable components 

 Increased overhead due to component management and version control 

 

PROPOSED SYSTEM: 

 

http://www.ijarets.org/
mailto:editor@ijarets.org


International Journal of Advanced Research in Engineering Technology and Science    ISSN 2349-2819 

www.ijarets.org                                   Volume-11, Issue-8 August – 2024                 Email- editor@ijarets.org 

 

Copyright@ijarets.org                                                                                                                      Page  100 

Since there are several proposed systems of software reuse that can be used to improve the software 

development process, Service oriented architecture is being proposed. 

Service-oriented architecture (SOA) is a software architecture that emphasizes the use of loosely 

coupled services. SOA promotes software reuse by allowing developers to reuse existing services to build 

new software systems. SOA services canbe implemented in any programming language and can be 

accessed using standard protocols such as SOAP and REST. 

 

SOA is an architectural style that encourages the use of services to enable communication between 

different software components. SOA can be presented as a technique to develop modular, reusable 

software components that can be shared and utilized in other applications when it comes to software 

reuse. 

SOA proposes a system that is composed of a set of services, each of which has a well-defined 

interface and functionality. These services can be reused in different applications, allowing for greater 

flexibility and efficiency in software development. 

SOA can be proposed as a way to create modular, reusable software components that can be shared and 

used in different applications. This approach promotes a flexible and efficient software development 

process that can save time and resources. 

SOFTWARE REUSE APPROACH: 

 

Software reuse technology is a software engineering approach that aims to reuse existing software 

components to create new software systems. There are several forms of software reuse, including system 

reuse, application reuse, component reuse, object reuse, and function reuse. 

 

System reuse involves selecting multiple applications that can be reused within a system. This 

approach requires the conceptual design, architectural design, system selection, interface development, 

integration and development to work parallel to governance and management policies. 

Application reuse entails changing a software system to meet the needs of several clients while 

preserving the source code. This form of reuse is created for wide market use and is sometimes referred 

to as commercial off-the-shelf (COTS) products. It employs a built-in configuration mechanism that 

allows a system to be developed to meet the needs of various customers. 

 

Component-based reuse divides software into atomic components. A repository of these components 

is used to build a new software system by selecting the appropriate component from the repository every 

time a new component is needed. 

Reusing software components that perform a certain activity, such as mathematical functions or class 

objects, is an example of object and function reuse. This way of reusing has been used in standard 

libraries for decades. It is particularly advantageous in areas such as mathematical algorithms and 

graphics, where the production of efficient objects and functions necessitates a specialised, pricey skill. 

CHALLENGES: 

The difficulties encountered during software reuse: It cites three separate studies that revealed distinct 

http://www.ijarets.org/
mailto:editor@ijarets.org


International Journal of Advanced Research in Engineering Technology and Science    ISSN 2349-2819 

www.ijarets.org                                   Volume-11, Issue-8 August – 2024                 Email- editor@ijarets.org 

 

Copyright@ijarets.org                                                                                                                      Page  101 

impediments andissues experienced during software reuse. 

B. Jalender and colleagues (2010) identified both technical and non-technical barriers to software reuse. 

Missing systematic component requirements, inability to guarantee the accuracy of a component, poor 

presentation of reusable pieces, and the absence of a software reconstitution technique are among the 

technical obstacles. The inability to engage, encourage, train, and reuse software, the lack of 

organisational support for software reuse institutionalisation, the difficulty in evaluating reuse benefits, 

and the need to address intellectual property rights and software reuse contractual issues are the non- 

technical barriers. 

Sajjah and Ali (2014) conducted a systematic study of 36 chosen studies and identified 8 challenges 

associated with software reuse during software application developments. The challenges highlighted by 

the study include domain analysisand modeling, lack of reuse skills and knowledge, lack of management 

support, high reuse cost, lack of component storage, lack of documentation, lack of proper IT 

infrastructure, and lack of team awareness. Making domain analysis and modelingthe highest form of 

challenge faced during software reuse. 

Charles (2014) categorized the challenges of software reuse into technical, organizational, economical, 

and legal impediments. The technical challenges include issues such as the lack of proper documentation 

and testing of reusable components, while the organizational challenges are related to the lack of support 

for reuse initiatives, inadequate training, and the absence of a reuse culture within an organization. The 

economic challenges refer to the cost of developing and maintaining a reusable library, and the legal 

challenges include issues such as intellectual property rights and software reusecontractual problems. 

The study highlighted several technical, organizational, economical, and legal obstacles to software 

reuse. Technical obstacles include finding codes and designs that are difficult to comprehend, 

particularly complex classes, and understanding the architecture of reference, frameworks, models, and 

classes. Organizational barriers include a lack of coordinated reuse from organizations, as they often do 

not have clear directives and processes that describe when and how to use existing software in 

conformity with software development strategies. Economical hurdles include the cost of the 

manufacturer to supply reuse components, viewed as an investment, and the cost for the "re-user" to 

locate, integrate, and check reusable components. Legal issues are broken down into four parts: trade 

secret protection, patents for new and inventive technicalinnovations, copyright protection, and ethical 

responsibilities and obligations. The reuse has the responsibility to have a quality assurance of the 

software to inspect if the reused software complies with quality standards to prevent damage and 

breakdowns. Overall, software reuse can be challenging, but if the challenges are addressed, it can be a 

viable option. 

 

Software reuse is the practice of utilizing existing software artifacts, such as code, documentation, and 

design, to develop new software systems. According to Schenkelberg (2016), structured and modular 

programming is the most likely use of software reuse, as it uses a top-down analysis approach for 

problem-solving, modularization for program structure and organization, and structured code for the 

individual modules, which simplifies the task of programming and reduces complexity, thus improving 

programmer productivity. 

 

However, there are several challenges that come with software reuse. These challenges, as highlighted 

http://www.ijarets.org/
mailto:editor@ijarets.org


International Journal of Advanced Research in Engineering Technology and Science    ISSN 2349-2819 

www.ijarets.org                                   Volume-11, Issue-8 August – 2024                 Email- editor@ijarets.org 

 

Copyright@ijarets.org                                                                                                                      Page  102 

by Schenkelberg (2016), include increased maintenance costs, the need for longer software tool support, 

a "Not invented here" attitude thatdecreases acceptance, the operating cost of producing and sustaining 

a component library, the time required to select reusable software components, the need for more 

knowledge and training, and the necessity for a more diverse skillset. 

 

To overcome these challenges, software developers must prioritize quality properties when adopting a 

reuse strategy. According to Capilla et al (2019), the most popular quality properties are readability, 

functional stability, performance interoperability, security, privacy, portability, efficiency, and 

modularity. If these properties are not put in place, software reuse can become challenging. 

 

Mäkitalo et al (2020) identified some downsides to software reuse, such as compatibility problems that can 

lead to technical debt, reuse of copy-paste causing problems of traceability, dependencies of snowball 

that can affect the reuse of code, reusable software assets often lacking maintenance, open package 

repositories causing security concerns, and General Public Licenses (GPL) that can be challenging to 

understand. 

In conclusion, software reuse is a positive practise that can increase productivity while decreasing 

complexity. However, it isnot without difficulties, and developers must prioritise quality properties 

while also addressing drawbacks in order to makesoftware reuse feasible and successful. 

DISCUSSIONS: 

 

Software reuse is an essential component of software engineering because it can result in significant 

benefits such as reduced development time, lower costs, greater software quality, and increased 

productivity. To enjoy these benefits, software architectures, design patterns, requirements 

specifications, and design documents must be rigorously documented and designed. The reuse of 

software components may not always be possible due to various factors such as technical 

obstacles,organizational barriers, economic hurdles, and legal issues. 

However, by employing the proper tactics, such as structured and modular programming, reusing 

theories and frameworks that provide the software's backbone, and reusing theories and frameworks 

that provide the software's backbone, these obstacles can be solved. 

To address the challenges connected with software reuse, software development techniques should 

include software reuse as an integral component of the development process. This includes meticulously 

documenting software components and architectures, creating libraries of reusable components, and 

encouraging reuse within the organisation. By executing these measures, software development teams 

can reduce maintenance costs, shorten development time, improve software quality and increase 

productivity. 

In conclusion, software reuse is a vital aspect of software engineering that can lead to significant 

benefits. It is essential to document and systematically design software components, architectures, and 

design patterns to reap the full benefits of software reuse. While there are challenges associated with 

software reuse, these can be overcome by adopting the right strategies and incorporating software reuse 

into the software development process. 

 

http://www.ijarets.org/
mailto:editor@ijarets.org


International Journal of Advanced Research in Engineering Technology and Science    ISSN 2349-2819 

www.ijarets.org                                   Volume-11, Issue-8 August – 2024                 Email- editor@ijarets.org 

 

Copyright@ijarets.org                                                                                                                      Page  103 

CONCLUSION: 

In conclusion, implementing software reuse through Service-Oriented Architecture (SOA) offers numerous 

advantages, including modularity, reusability, flexibility, loose coupling, service discovery, 

interoperability, and scalability. However, challenges such as locating, selecting, and adapting existing 

components alongside organizational and cultural barriers must be addressed.To fully leverage the benefits 

of SOA for software reuse, careful planning and strategic implementation are essential. SOA enables the 

creation of flexible and efficient modular components, where loose coupling supports easier upgrades and 

replacements without disrupting the entire system. Additionally, service discovery mechanisms enhance 

interoperability, while the scalable design of SOA supports future growth.Ultimately, with thoughtful 

adoption, SOA can significantly improve the quality and productivity of software development by fostering 

an environment conducive to effective software reuse. 

 

REFERENCES 

 

1. Ahmar, I., Abualkishik, A., & Yusof, M. (2024). Taxonomy, Definition, Approaches, Benefits, 

Reusability Levels, Factors and Adaption of Software Reusability: A Review of The Research 

Literature. Journal of Applied Sciences, 14. https://doi.org/10.3923/jas.2014.2396.2421 

 

2. B. Jalender, N. Gowtham, Kumar, K. Praveen, K. Murahari, & K. Sampath. (2010). Technical 

Impediments to Software Reuse. International Journal of Engineering Science and Technology, 

2(11). 

3. Capilla, R., Gallina, B., Cetina, C., & Favaro, J. (2019). Opportunities for Software Reuse in An 

Uncertain World: From Past to Emerging Trends. Journal of Software: Evolution and Process, 

31(8). https://doi.org/10.1002/smr.2217 

4. Gacek, C. (Ed.). (2022). Software Reuse: Methods, Techniques, And Tools: 7th International 

Conference, ICSR-7 Austin, TX, USA, April 15–19, 2002 Proceedings (Vol. 2319). Springer 

Berlin Heidelberg. https://doi.org/10.1007/3-540-46020-9 

5. Jalender, B., Govardhan, D., & Premchand, P. (2010). A Pragmatic Approach to Software 

Reuse. Journal of Theoretical and Applied Information Technology, 14, 10. 

6. Kaur, A., & Sohal, H. (2023). QR Code Library on The Base of Software Reuse Approach. 

International Journal of Science and Engineering Applications, 2, 44–48. 

https://doi.org/10.7753/ijsea0203.1002 

7. Keswani, R., Joshi, S., & Jatain, A. (2014). Software Reuse in Practice. 2014 Fourth International 

Conference on Advanced Computing & Communication Technologies, 159–162. 

https://doi.org/10.1109/acct.2014.57 

 

8. Kim, Y., & Stohr, E. A. (1992). Software Reuse: Issues and Research Directions. Proceedings of 

the Twenty-Fifth Hawaii International Conference on System Sciences, 612–623 Vol.4. 

https://doi.org/10.1109/HICSS.1992.183360 

http://www.ijarets.org/
mailto:editor@ijarets.org


International Journal of Advanced Research in Engineering Technology and Science    ISSN 2349-2819 

www.ijarets.org                                   Volume-11, Issue-8 August – 2024                 Email- editor@ijarets.org 

 

Copyright@ijarets.org                                                                                                                      Page  104 

 

9. Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., & Capilla, R. (2023). On 

Opportunistic Software Reuse. Computing, 102(11), 2385–2408. 

http://www.ijarets.org/
mailto:editor@ijarets.org

